今天给各位分享linux内核维护怎么样的知识,其中也会对linux系统升级内核进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、Linux系统怎么样?
- 2、linux运维工程师都是干什么啊 有发展吗
- 3、研究生课题 linux内核怎么样 2015
- 4、Linux内核模块的优缺点
- 5、linux内核大约有多少人在维护?只算内核开发者,不算像ubuntu、红旗等的系统开发者。
- 6、linux系统的优缺点
1、Linux系统怎么样?
1、易于使用。Linux几乎具备Windows的功能,具有良好的图形用户界面(GUI),能满足大多数用户的需求。
2、易于维护。Linux系统非常容易维护,每个发行版都有自己的软件管理中心,提供定时更新,即安全又高效。
3、高安全性、高可用性。Linux非常安全稳定,不易崩溃,除非用户以root身份登录,否则程序无法更改系统设置和配置。
4、可在任何硬件上运行。Linux能有效利用系统资源,用户可自行选择需要安装的模块,能够最佳地使用所有硬件资源。
5、免费开源。Linux完全免费且拥有强大的免费软件群,企业可以免费使用软件,大大降低了成本预算。
2、linux运维工程师都是干什么啊 有发展吗
昨天,在知乎上有小伙伴向小青咨询关于:“Linux运维工程师的发展方向?赚高薪的运维人员都具备哪些常用技术?”的问题。今天,小编就简单聊聊这些两个话题,希望能够帮助到迷茫的你!
一起康康Linux运维工程师的发展方向:
1、运维工程师
运维工程师平均薪资14.6K/月。
我认为运维工程师是基础的运维岗位,不负责写代码,只负责基础的系统维护,包括应用环境搭建,基础的业务运营过程中的故障排查;这个职位大部分是面向刚毕业的大学生或经验尚浅的工作者。
2、运维开发工程师
运维开发工程师平均薪资24.0K/月。
这个岗位是建立在纯运维工程师之上的,除了具备基础的排除故障能力,还应当对业务和各种应用服务有深刻的理解,了解业务问题和通点,能够在基础的维护工作之外,增加优化系统的思路;不仅应当具备基础的Linux知识之外,还应当具备一定的开发能力,比如shell脚本开发能力,或perl、python、java、go等一种高级语言,能够针对现有的系统弊端,开发一些脚本程序或工具,增加系统的自动化处理和恢复能力;这个岗位的发展目标是系统架构师。
3、运维平台研发工程师/架构师
运维架构师平均薪资34.4k/月。
负责研发适合公司业务系统的通用基础平台或组件,对研发能力有较高要求,需要具备产品线的运维经验和丰富的系统架构知识;例如现在热门的自动化运维方向,就需要开发适合自己公司需要的自动化平台,比如自动安装平台,自动应用服务维护平台,自动更新配置平台等。这个岗位和系统架构师没有明显的界限,通常好的运维平台研发工程师也能适应架构师的工作。
下面将运维中需求学习或能让你运维作业加分的技能稍做介绍。(这两个技能,我认为真真真真挺好的)
1、编程开发
关于Linux平台下的运维人员,仍是引荐Shell加Perl的组合,究竟那么多年过来了。这个组合一直在为各大网站的工程师们稳定的作业着。另外,Python也是一个十分值得引荐利器。这种言语具有十分简捷而明晰的语法特色,适合完结各种高层任务,简直能够在所有的操作体系中运转。现在,依据这种言语的相关技能正在飞速的开展,用户数量急剧扩展,相关的资源十分多。
现阶段,掌握一门开发语言已经成为高级运维工程师的必备技能。运维学开发,Python势必是你不二之选。PYTHON被称为胶水语言, 能满足绝大部分自动化运维的需求,又能做后端 C/S 架构,又能用 WEB 框架快速开发出高大上的 WEB 界面,还能做机器学习。
2、网络设备
了解网络根底知识、网络通信协议和常见的网络设备是有必要的。建议把思科和华为这两家的产品摸熟。
假如是在稍微大一点的公司作业或者哥们你就是在IDC混,那还得学会对企业局域网和广域网进行规划、完成和查看排错,VLAN是有必要的。其他就是视频、语音之类的网络效劳了。根底的都搞理解了之后还想进步自己朋友能够去学一下CCNP或者H3CNE的课程。
以上就是小编今天为大家分享的关于“Linux运维工程师的发展方向?赚高薪的运维人员都具备哪些常用技术?”的文章。同时,小青还想说一句:“各个方向上的工程师发展到一定阶段后,没有明确的界限,需要同时具备较强的运维、架构、编程、算法等能力,是一个要求很高的职业。但职业发展道路,必须循序渐进,一个好的运维工程师,肯定应当具备较强的开发能力,希望大家在发展过程中,具备了基础的Linux知识之后,一定要学习一些开发技能,比如必备的shell编程能力,另外还要掌握一门高级语言,比如热门的python语言,是一个不错的选择。”
【免责声明:部分图片及文字信息部分由小编整理自网络,旨在分享提供阅读,如有侵权请联系我们进行删除。】
3、研究生课题 linux内核怎么样 2015
图2-1显示了基于x86计算机Linux系统的启动顺序。第一步是BIOS从启动设备中导入主引导记录(MBR),接下来MBR中的代码查看分区表并从活动分区读取GRUB、LILO或SYSLINUX等引导装入程序,之后引导装入程序会加载压缩后的内核映像并将控制权传递给它。内核取得控制权后,会将自身解压缩并投入运转。
基于x86的处理器有两种操作模式:实模式和保护模式。在实模式下,用户仅可以使用1 MB内存,并且没有任何保护。保护模式要复杂得多,用户可以使用更多的高级功能(如分页)。CPU 必须中途将实模式切换为保护模式。但是,这种切换是单向的,即不能从保护模式再切换回实模式。
内核初始化的第一步是执行实模式下的汇编代码,之后执行保护模式下init/main.c文件(上一章修改的源文件)中的 start_kernel()函数。start_kernel()函数首先会初始化CPU子系统,之后让内存和进程管理系统就位,接下来启动外部总线和 I/O设备,最后一步是激活初始化(init)程序,它是所有Linux进程的父进程。初始化进程执行启动必要的内核服务的用户空间脚本,并且最终派生控制台终端程序以及显示登录(login)提示。
图2-1 基于x86硬件上的Linux的启动过程
本节内的3级标题都是图2-2中的一条打印信息,这些信息来源于基于x86的笔记本 电脑的Linux启动过程。如果在其他体系架构上启动内核,消息以及语义可能会有所不同。
2.1.1 BIOS-provided physical RAM map
内核会解析从BIOS中读取到的系统内存映射,并率先将以下信息打印出来:
BIOS-provided physical RAM map:
BIOS-e820: 0000000000000000 - 000000000009f000 (usable)
...
BIOS-e820: 00000000ff800000 - 0000000100000000 (reserved)
实模式下的初始化代码通过使用BIOS的int 0x15服务并执行0xe820号函数(即上面的BIOS-e820字符串)来获得系统的内存映射信息。内存映射信息中包含了预留的和可用的内存,内核将随后使用这些信息创建其可用的内存池。在附录B的B.1节,我们会对BIOS提供的内存映射问题进行更深入的讲解。
图2-2 内核启动信息
2.1.2 758MB LOWMEM available
896 MB以内的常规的可被寻址的内存区域被称作低端内存。内存分配函数kmalloc()就是从该区域分配内存的。高于896 MB的内存区域被称为高端内存,只有在采用特殊的方式进行映射后才能被访问。
在启动过程中,内核会计算并显示这些内存区内总的页数。
2.1.3 Kernel command line: ro root=/dev/hda1
Linux的引导装入程序通常会给内核传递一个命令行。命令行中的参数类似于传递给C程序中main()函数的argv[]列表,唯一的不同在于它们是传递给内核的。可以在引导装入程序的配置文件中增加命令行参数,当然,也可以在运行过程中修改引导装入程序的提示行[1]。如果使用的是GRUB 这个引导装入程序,由于发行版本的不同,其配置文件可能是/boot/grub/grub.conf或者是/boot/grub/menu.lst。如果使用的是LILO,配置文件为/etc/lilo.conf。下面给出了一个grub.conf文件的例子(增加了一些注释),看了紧接着title kernel 2.6.23的那行代码之后,你会明白前述打印信息的由来。
default 0 #Boot the 2.6.23 kernel by default
timeout 5 #5 second to alter boot order or parameters
title kernel 2.6.23 #Boot Option 1
#The boot image resides in the first partition of the first disk
#under the /boot/ directory and is named vmlinuz-2.6.23. 'ro'
#indicates that the root partition should be mounted read-only.
kernel (hd0,0)/boot/vmlinuz-2.6.23 ro root=/dev/hda1
#Look under section "Freeing initrd memory:387k freed"
initrd (hd0,0)/boot/initrd
#...
命令行参数将影响启动过程中的代码执行路径。举一个例子,假设某命令行参数为bootmode,如果该参数被设置为1,意味着你希望在启动过程中打印一些调试信息并在启动结束时切换到runlevel的第3级(初始化进程的启动信息打印后就会了解runlevel的含义);如果bootmode 参数被设置为0,意味着你希望启动过程相对简洁,并且设置runlevel为2。既然已经熟悉了init/main.c文件,下面就在该文件中增加如下修改:
static unsigned int bootmode = 1 ;
static int __init
is_bootmode_setup( char * str)
{
get_option( str, bootmode);
return 1 ;
}
/* Handle parameter "bootmode=" */
__setup( " bootmode= " , is_bootmode_setup);
if (bootmode) {
/* Print verbose output */
/* ... */
}
/* ... */
/* If bootmode is 1, choose an init runlevel of 3, else
switch to a run level of 2 */
if (bootmode) {
argv_init[ ++ args] = " 3 " ;
} else {
argv_init[ ++ args] = " 2 " ;
}
/* ... */
请重新编译内核并尝试运行新的修改。
2.1.4 Calibrating delay...1197.46 BogoMIPS (lpj=2394935)
在启动过程中,内核会计算处理器在一个jiffy时间内运行一个内部的延迟循环的次数。jiffy的含义是系统定时器2个连续的节拍之间的间隔。正如所料,该计算必须被校准到所用CPU的处理速度。校准的结果被存储 在称为loops_per_jiffy的内核变量中。使用loops_per_jiffy的一种情况是某设备驱动程序希望进行小的微秒级别的延迟的时候。
为了理解延迟—循环校准代码,让我们看一下定义于init/calibrate.c文件中的calibrate_ delay()函数。该函数灵活地使用整型运算得到了浮点的精度。如下的代码片段(有一些注释)显示了该函数的开始部分,这部分用于得到一个 loops_per_jiffy的粗略值:
loops_per_jiffy = ( 1 12 ); /* Initial approximation = 4096 */
printk(KERN_DEBUG “Calibrating delay loop...“);
while ((loops_per_jiffy = 1 ) != 0 ) {
ticks = jiffies; /* As you will find out in the section, “Kernel
Timers," the jiffies variable contains the
number of timer ticks since the kernel
started, and is incremented in the timer
interrupt handler */
while (ticks == jiffies); /* Wait until the start of the next jiffy */
ticks = jiffies;
/* Delay */
__delay(loops_per_jiffy);
/* Did the wait outlast the current jiffy? Continue if it didn't */
ticks = jiffies - ticks;
if (ticks) break ;
}
loops_per_jiffy = 1 ; /* This fixes the most significant bit and is
the lower-bound of loops_per_jiffy */
上述代码首先假定loops_per_jiffy大于4096,这可以转化为处理器速度大约为每秒100万条指令,即1 MIPS。接下来,它等待jiffy被刷新(1个新的节拍的开始),并开始运行延迟循环__delay(loops_per_jiffy)。如果这个延迟循环持续了1个jiffy以上,将使用以前的loops_per_jiffy值(将当前值右移1位)修复当前loops_per_jiffy的最高位;否则,该函数继续通过左移loops_per_jiffy值来探测出其最高位。在内核计算出最高位后,它开始计算低位并微调其精度:
loopbit = loops_per_jiffy;
/* Gradually work on the lower-order bits */
while (lps_precision -- (loopbit = 1 )) {
loops_per_jiffy |= loopbit;
ticks = jiffies;
while (ticks == jiffies); /* Wait until the start of the next jiffy */
ticks = jiffies;
/* Delay */
__delay(loops_per_jiffy);
if (jiffies != ticks) /* longer than 1 tick */
loops_per_jiffy = ~ loopbit;
}
上述代码计算出了延迟循环跨越jiffy边界时loops_per_jiffy的低位值。这个被校准的值可被用于获取BogoMIPS(其实它是一个并非科学的处理器速度指标)。可以使用BogoMIPS作为衡量处理器运行速度的相对尺度。在1.6G Hz 基于Pentium M的笔记本 电脑上,根据前述启动过程的打印信息,循环校准的结果是:loops_per_jiffy的值为2394935。获得BogoMIPS的方式如下:
BogoMIPS = loops_per_jiffy * 1秒内的jiffy数 * 延迟循环消耗的指令数(以百万为单位)
= ( 2394935 * HZ * 2 ) / ( 1000000 )
= ( 2394935 * 250 * 2 ) / ( 1000000 )
= 1197.46 (与启动过程打印信息中的值一致)
在2.4节将更深入阐述jiffy、HZ和loops_per_jiffy。
2.1.5 Checking HLT instruction
由于Linux内核支持多种硬件平台,启动代码会检查体系架构相关的bug。其中一项工作就是验证停机(HLT)指令。
x86处理器的HLT指令会将CPU置入一种低功耗睡眠模式,直到下一次硬件中断发生之前维持不变。当内核想让CPU进入空闲状态时(查看 arch/x86/kernel/process_32.c文件中定义的cpu_idle()函数),它会使用HLT指令。对于有问题的CPU而言,命令行参数no-hlt可以禁止HLT指令。如果no-hlt被设置,在空闲的时候,内核会进行忙等待而不是通过HLT给CPU降温。
当init/main.c中的启动代码调用include/asm-your-arch/bugs.h中定义的check_bugs()时,会打印上述信息。
2.1.6 NET: Registered protocol family 2
Linux套接字(socket)层是用户空间应用程序访问各种网络 协议的统一接口。每个协议通过include/linux/socket.h文件中定义的分配给它的独一无二的系列号注册。上述打印信息中的Family 2代表af_inet(互联网协议)。
启动过程中另一个常见的注册协议系列是AF_NETLINK(Family 16)。网络链接套接字提供了用户进程和内核通信 的方法。通过网络链接套接字可完成的功能还包括存取路由表和地址解析协议(ARP)表(include/linux/netlink.h文件给出了完整的用法列表)。对于此类任务而言,网络链接套接字比系统调用更合适,因为前者具有采用异步机制、更易于实现和可动态链接的优点。
内核中经常使能的另一个协议系列是AF_Unix或Unix-domain套接字。X Windows等程序使用它们在同一个系统上进行进程间通信。
2.1.7 Freeing initrd memory: 387k freed
initrd是一种由引导装入程序加载的常驻内存的虚拟磁盘映像。在内核启动后,会将其挂载为初始根文件系统,这个初始根文件系统中存放着挂载实际根文件系统磁盘分区时所依赖的可动态连接的模块。由于内核可运行于各种各样的存储控制器硬件平台上,把所有可能的磁盘驱动程序都直接放进基本的内核映像中并不可行。你所使用的系统的存储设备的驱动程序被打包放入了initrd中,在内核启动后、实际的根文件系统被挂载之前,这些驱动程序才被加载。使用 mkinitrd命令可以创建一个initrd映像。
2.6内核提供了一种称为initramfs的新功能,它在几个方面较initrd更为优秀。后者模拟了一个磁盘(因而被称为 initramdisk或initrd),会带来Linux块I/O子系统的开销(如缓冲);前者基本上如同一个被挂载的文件系统一样,由自身获取缓冲 (因此被称作initramfs)。
不同于initrd,基于页缓冲建立的initramfs如同页缓冲一样会动态地变大或缩小,从而减少了其内存消耗。另外,initrd要求你的内核映像包含initrd所使用的文件系统(例如,如果initrd为EXT2文件系统,内核必须包含EXT2驱动程序),然而initramfs不需要文件系统支持。再者,由于initramfs只是页缓冲之上的一小层,因此它的代码量很小。
用户可以将初始根文件系统打包为一个cpio压缩包[1],并通过initrd=命令行参数传递给内核。当然,也可以在内核配置过程中通过 INITRAMFS_SOURCE选项直接编译进内核。对于后一种方式而言,用户可以提供cpio压缩包的文件名或者包含initramfs的目录树。在启动过程中,内核会将文件解压缩为一个initramfs根文件系统,如果它找到了/init,它就会执行该顶层的程序。这种获取初始根文件系统的方法对于嵌入式系统而言特别有用,因为在嵌入式系统中系统资源非常宝贵。使用mkinitramfs可以创建一个initramfs映像,查看文档 Documentation/filesystems/ramfs- rootfs-initramfs.txt可获得更多信息。
在本例中,我们使用的是通过initrd=命令行参数向内核传递初始根文件系统cpio压缩包的方式。在将压缩包中的内容解压为根文件系统后,内核将释放该压缩包所占据的内存(本例中为387 KB)并打印上述信息。释放后的页面会被分发给内核中的其他部分以便被申请。
在嵌入式系统开发过程中,initrd和initramfs有时候也可被用作嵌入式设备上实际的根文件系统。
2.1.8 io scheduler anticipatory registered (default)
I/O调度器的主要目标是通过减少磁盘的定位次数来增加系统的吞吐率。在磁盘定位过程中,磁头需要从当前的位置移动到感兴趣的目标位置,这会带来一定的延迟。2.6内核提供了4种不同的I/O调度器:Deadline、Anticipatory、Complete Fair Queuing以及NOOP。从上述内核打印信息可以看出,本例将Anticipatory 设置为了默认的I/O调度器。
2.1.9 Setting up standard PCI resources
启动过程的下一阶段会初始化I/O总线和外围控制器。内核会通过遍历PCI总线来探测PCI硬件,接下来再初始化其他的I/O子系统。从图2-3中我们会看到SCSI子系统、USB控制器、视频 芯片(855北桥芯片组信息中的一部分)、串行端口(本例中为8250 UART)、PS/2键盘 和鼠标 、软驱 、ramdisk、loopback设备、IDE控制器(本例中为ICH4南桥芯片组中的一部分)、触控板、以太网控制器(本例中为e1000)以及PCMCIA控制器初始化的启动信息。图2-3中 符号指向的为I/O设备的标识(ID)。
图2-3 在启动过程中初始化总线和外围控制器
本书会以单独的章节讨论大部分上述驱动程序子系统,请注意如果驱动程序以模块的形式被动态链接到内核,其中的一些消息也许只有在内核启动后才会被显示。
2.1.10 EXT3-fs: mounted filesystem
EXT3文件系统已经成为Linux事实上的文件系统。EXT3在退役的EXT2文件系统基础上增添了日志层,该层可用于崩溃后文件系统的快速恢复。它的目标是不经由耗时的文件系统检查(fsck)操作即可获得一个一致的文件系统。EXT2仍然是新文件系统的工作引擎,但是EXT3层会在进行实际的磁盘改变之前记录文件交互的日志。EXT3向后兼容于EXT2,因此,你可以在你现存的EXT2文件系统上加上EXT3或者由EXT3返回到EXT2 文件系统。
EXT3会启动一个称为kjournald的内核辅助线程(在接下来的一章中将深入讨论内核线程)来完成日志功能。在EXT3投入运转以后,内核挂载根文件系统并做好“业务”上的准备:
EXT3-fs: mounted filesystem with ordered data mode
kjournald starting. Commit interval 5 seconds
VFS: Mounted root (ext3 filesystem).
2.1.11 INIT: version 2.85 booting
所有Linux进程的父进程init是内核完成启动序列后运行的第1个程序。在init/main.c的最后几行,内核会搜索一个不同的位置以定位到init:
if (ramdisk_execute_command) { /* Look for /init in initramfs */
run_init_process(ramdisk_execute_command);
}
if (execute_command) { /* You may override init and ask the kernel
to execute a custom program using the
"init=" kernel command-line argument. If
you do that, execute_command points to the
specified program */
run_init_process(execute_command);
}
/* Else search for init or sh in the usual places .. */
run_init_process( " /sbin/init " );
run_init_process( " /etc/init " );
run_init_process( " /bin/init " );
run_init_process( " /bin/sh " );
panic( " No init found. Try passing init= option to kernel. " );
init会接受/etc/inittab的指引。它首先执行/etc/rc.sysinit中的系统初始化脚本,该脚本的一项最重要的职责就是激活对换(swap)分区,这会导致如下启动信息被打印:
Adding 1552384k swap on /dev/hda6
让我们来仔细看看上述这段话的意思。Linux用户进程拥有3 GB的虚拟地址空间(见2.7节),构成“工作集”的页被保存在RAM中。但是,如果有太多程序需要内存资源,内核会释放一些被使用了的RAM页面并将其存储到称为对换空间(swap space)的磁盘分区中。根据经验法则,对换分区的大小应该是RAM的2倍。在本例中,对换空间位于/dev/hda6这个磁盘分区,其大小为1 552 384 KB。
接下来,init开始运行/etc/rc.d/rcX.d/目录中的脚本,其中X是inittab中定义的运行级别。runlevel是根据预期的工作模式所进入的执行状态。例如,多用户文本模式意味着runlevel为3,X Windows则意味着runlevel为5。因此,当你看到INIT: Entering runlevel 3这条信息的时候,init就已经开始执行/etc/rc.d/rc3.d/目录中的脚本了。这些脚本会启动动态设备命名子系统(第4章中将讨论 udev),并加载网络、音频、存储设备等驱动程序所对应的内核模块:
Starting udev: [ OK ]
Initializing hardware... network audio storage [Done]
...
最后,init发起虚拟控制台终端,你现在就可以登录了。
4、Linux内核模块的优缺点
利用内核模块的动态装载性具有如下优点:
·将内核映象的尺寸保持在最小,并具有最大的灵活性;
·便于检验新的内核代码,而不需重新编译内核并重新引导。
但是,内核模块的引入也带来了如下问题:
·对系统性能和内存利用有负面影响;
·装入的内核模块和其他内核部分一样,具有相同的访问权限,因此,差的内核模块会导致系统崩溃;
·为了使内核模块访问所有内核资源,内核必须维护符号表,并在装入和卸载模块时修改这些符号表;
·有些模块要求利用其他模块的功能,因此,内核要维护模块之间的依赖性。
·内核必须能够在卸载模块时通知模块,并且要释放分配给模块的内存和中断等资源;
·内核版本和模块版本的不兼容,也可能导致系统崩溃,因此,严格的版本检查是必需的。
尽管内核模块的引入同时也带来不少问题,但是模块机制确实是扩充内核功能一种行之有效的方法,也是在内核级进行编程的有效途径。
5、linux内核大约有多少人在维护?只算内核开发者,不算像ubuntu、红旗等的系统开发者。
听说有几千人固定开发(公司名义、业余方式什么的全算。但注意关键词是固定),但你要知道这种开发是很松散的。有可能某个人提交了一个 patch ,他就算开发人员,但他可能这辈子就提交这么一个 patch ……
6、linux系统的优缺点
优点:
1、Linux是一款免费的操作系统,用户可以通过网络或其他途径免费获得,并可以任意修改其源代码。这是其他的操作系统所做不到的。
2、Linux可以运行在多种硬件平台上,如具有x86、680x0、SPARC、Alpha等处理器的平台。此外Linux还是一种嵌入式操作系统,可以运行在掌上电脑、机顶盒或游戏机上。
3、完全兼容POSIX1.0标准,这使得可以在Linux下通过相应的模拟器运行常见的DOS、Windows的程序。这为用户从Windows转到Linux奠定了基础。
缺点:
1、Linux内核提供了一个调度程序来管理系统中运行的进程。几乎总是,先发制人的;这意味着调度程序执行一段时间,如果进程尚未完成,则调度程序将停止进程并开始执行另一个进程。
2、内存管理器是内核最重要的核心部分之一。它提供物理到虚拟内存映射功能以及分页和交换到物理磁盘。内存管理器使用与体系结构相关的代码来访问计算机的物理内存。虽然内核维护自己的虚拟地址空间,但用户空间中的每个进程都有自己的虚拟地址空间。
扩展资料:
桌面环境
在图形计算中,一个桌面环境(Desktop environment,有时称为桌面管理器)为计算机提供一个图形用户界面(GUI)。但严格来说窗口管理器和桌面环境是有区别的。
桌面环境就是桌面图形环境,它的主要目标是为Linux/Unix操作系统提供一个更加完备 的界面以及大量各类整合工具和使用 程序,其基本 易用性吸引着大量的新用户。
桌面环境名称来自桌面比拟,对应于早期的文字命令行界面(CLI)。一个典型的桌面环境提供图标,视窗,工具栏,文件夹,壁纸以及像拖放这样的能力。整体而言,桌面环境在设计和功能上的特性,赋予了它与众不同的外观和感觉。
现今主流的桌面环境有KDE,gnome,Xfce,LXDE等,除此之外还有Ambient,EDE,IRIX Interactive Desktop,Mezzo,Sugar,CDE等。
参考资料来源:百度百科-linux系统
linux内核维护怎么样的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于linux系统升级内核、linux内核维护怎么样的信息别忘了在本站进行查找喔。