今天给各位分享linux中如何装载信号的知识,其中也会对如何发送信号linux进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
1、linux系统中SIGUSR1信号是如何产生的。
首先,Linux中的信号可以通过kill -l命令获取,如下图所示:
如上图所示,编号为1 ~ 31的信号为传统UNIX支持的信号,是不可靠信号(非实时的),编号为32 ~ 63的信号是后来扩充的,称做可靠信号(实时信号)。不可靠信号和可靠信号的区别在于前者不支持排队,可能会造成信号丢失,而后者不会。
其次,SIGUSR1 ,这是留给用户使用的信号。一般在编程中使用。举例说明:sigqueue向本进程发送数据的信号,C语言代码如下 :
#include stdio.h
#include string.h
#include stdlib.h
#include signal.h
#include unistd.h
void myhandler(int signo,siginfo_t *si,void *ucontext);
int main(){
union sigval val;//定义一个携带数据的共用体
struct sigaction oldact,act;
act.sa_sigaction=myhandler;
act.sa_flags=SA_SIGINFO;//表示使用sa_sigaction指示的函数,处理完恢复默认,不阻塞处理过程中到达下在被处理的信号
//注册信号处理函数
sigaction(SIGUSR1,act,oldact);
char data[100];
int num=0;
while(num10){
sleep(2);
printf("等待SIGUSR1信号的到来\n");
sprintf(data,"%d",num++);
val.sival_ptr=data;
sigqueue(getpid(),SIGUSR1,val);//向本进程发送一个信号
}
}
void myhandler(int signo,siginfo_t *si,void *ucontext){
printf("已经收到SIGUSR1信号\n");
printf("%s\n",(char*)(si-si_ptr));
}
2、linux系统下进程的信号处理流程是怎么样的
信号的处理由用户态和内核态共同完成,当信号来了,系统会首先切换到内核态来做一些工作处理这个信号,此时该CPU上无法执行其他的线程。但是如果你有多个CPU或者多个core,那么其他的线程的工作就不会受影响。
3、linux中的信号怎么理解?
linux的常用信号量BUS与SEGV二者都是错误信号,BUS表示总线错误,SEGV表示段错误,程序崩溃的时候99%都是这两个错误导致的。进程可以捕获和封锁这两类错误。内核对二者的默认处理是memorydumpWINCH窗口改变信号(WINdownCHanged)。例如虚拟终端的行数发生变化时将发送WINCH信号,绝大多数文本编辑器都能捕获WINCH信号自动进行重新配置。内核的默认处理是忽略该信号,并且不进行内存转储。进程可以捕获或者封锁该信号KILL 杀死/删除进程,编号为9STOP 挂起/暂停正在执行的进程,直到收到CONT为止KILLSTOP都不能够被捕获、封锁或者忽略,默认处理都不会产生内存转储。CONT 取消挂起,继续执行进程TSTP 是STOP信号的“软”版本,即在用户输入Ctrl+Z时由终端驱动程序发送的信号。捕获到该信号的进程通常清除它们的状态,如何给自己发送一个STOP信号。TSTP的默认处理不会导致内存转储。INT 中断信号,编号为2当用户输入Ctrl+C时由终端驱动程序发送INT信号INT信号是终止当前操作的请求,简单程序捕获到INT信号时应该退出,拥有命令行或者输入模式的那些程序应该停止他们正在做的事情,清除状态,并等待用户再次输入。TERM 软件终止信号,编号为15TERM是请求彻底终止某项操作的信号,它期望进程清楚自己的状态并退出QUIT 退出信号,编号为3与TERM类似,不同之处在于QUIT信号的默认处理是内存转储,而TERM信号的默认处理没有内存转储。HUP 挂起信号,编号为1,有两种解释:守护进程理解HUP为重新设置的请求,如果守护进程能够不用重新启动就能够重新读取它自己的配置文件并调整自己以适应变化的话,那么HUP信号通常可以用来触发这种行为HUP信号有时有终端驱动程序生成,试图用来清除(也就是终止)跟某个特定终端相连接的那些进程。例如当一个终端会话结束时,或者当一个Modem的连接不经意的断开时,就可能出现这种情况。如果需要某些进程在会话结束之后继续运行,那么在CShell中设法让这些进程变成后台程序,ksh或者bash中可以用nohup来模拟这种行为。++++++++++++++++++++++++++++++++++++++++++++++++++++++++++进程的四种状态runnable(可运行状态)只要有CPU时间,进程就可以执行。一旦进程执行了不能立即完成的系统调用,Linux会把进程转入睡眠状态sleeping(睡眠状态)进程在等待某些事件发生(如终端输入、网络连接)zombie(僵化状态)进程已经执行完毕并试图消亡,但是状态没有收集完stopped(停止状态)进程被挂起,不允许执行。进程收到STOP或者TSTP信号即进入停止状态,可以用CONT信号来重新启动
4、Linux下signal信号汇总
Linux下signal信号汇总
SIGHUP 1 /* Hangup (POSIX). / 终止进程 终端线路挂断
SIGINT 2 / Interrupt (ANSI). / 终止进程 中断进程 Ctrl+C
SIGQUIT 3 / Quit (POSIX). / 建立CORE文件终止进程,并且生成core文件 Ctrl+
SIGILL 4 / Illegal instruction (ANSI). / 建立CORE文件,非法指令
SIGTRAP 5 / Trace trap (POSIX). / 建立CORE文件,跟踪自陷
SIGABRT 6 / Abort (ANSI). /
SIGIOT 6 / IOT trap (4.2 BSD). / 建立CORE文件,执行I/O自陷
SIGBUS 7 / BUS error (4.2 BSD). / 建立CORE文件,总线错误
SIGFPE 8 / Floating-point exception (ANSI). / 建立CORE文件,浮点异常
SIGKILL 9 / Kill, unblockable (POSIX). / 终止进程 杀死进程
SIGUSR1 10 / User-defined signal 1 (POSIX). / 终止进程 用户定义信号1
SIGSEGV 11 / Segmentation violation (ANSI). / 建立CORE文件,段非法错误
SIGUSR2 12 / User-defined signal 2 (POSIX). / 终止进程 用户定义信号2
SIGPIPE 13 / Broken pipe (POSIX). / 终止进程 向一个没有读进程的管道写数据
SIGALARM 14 / Alarm clock (POSIX). / 终止进程 计时器到时
SIGTERM 15 / Termination (ANSI). / 终止进程 软件终止信号
SIGSTKFLT 16 / Stack fault. /
SIGCLD SIGCHLD / Same as SIGCHLD (System V). /
SIGCHLD 17 / Child status has changed (POSIX). / 忽略信号 当子进程停止或退出时通知父进程
SIGCONT 18 / Continue (POSIX). / 忽略信号 继续执行一个停止的进程
SIGSTOP 19 / Stop, unblockable (POSIX). / 停止进程 非终端来的停止信号
SIGTSTP 20 / Keyboard stop (POSIX). / 停止进程 终端来的停止信号 Ctrl+Z
SIGTTIN 21 / Background read from tty (POSIX). / 停止进程 后台进程读终端
SIGTTOU 22 / Background write to tty (POSIX). / 停止进程 后台进程写终端
SIGURG 23 / Urgent condition on socket (4.2 BSD). / 忽略信号 I/O紧急信号
SIGXCPU 24 / CPU limit exceeded (4.2 BSD). / 终止进程 CPU时限超时
SIGXFSZ 25 / File size limit exceeded (4.2 BSD). / 终止进程 文件长度过长
SIGVTALRM 26 / Virtual alarm clock (4.2 BSD). / 终止进程 虚拟计时器到时
SIGPROF 27 / Profiling alarm clock (4.2 BSD). / 终止进程 统计分布图用计时器到时
SIGWINCH 28 / Window size change (4.3 BSD, Sun). / 忽略信号 窗口大小发生变化
SIGPOLL SIGIO / Pollable event occurred (System V). /
SIGIO 29 / I/O now possible (4.2 BSD). / 忽略信号 描述符上可以进行I/O
SIGPWR 30 / Power failure restart (System V). /
SIGSYS 31 / Bad system call. */
SIGUNUSED 31
有两个信号可以停止进程:SIGTERM和SIGKILL。 SIGTERM 比较友好,进程能捕捉这个信号,根据您的需要来关闭程序。
在关闭程序之前,您可以结束打开的记录文件和完成正在做的任务。在某些情况下,假如进程正在进行作业而且不能中断,那么进程可以忽略这个SIGTERM信号。
对于 SIGKILL 信号,进程是不能忽略的。这是一个 “我不管您在做什么,立刻停止”的信号。假如您发送SIGKILL信号给进程,Linux就将进程停止在那里。
sigaddset 将信号signo 加入到信号集合之中;
sigdelset 将信号从信号集合中删除;
sigemptyset 函数初始化信号集合set,将set 设置为空;
sigfillset 也初始化信号集合,只是将信号集合设置为所有信号的集合;
5、Linux进程间通信
linux下进程间通信的几种主要手段简介:
一般文件的I/O函数都可以用于管道,如close、read、write等等。
实例1:用于shell
管道可用于输入输出重定向,它将一个命令的输出直接定向到另一个命令的输入。比如,当在某个shell程序(Bourne shell或C shell等)键入who│wc -l后,相应shell程序将创建who以及wc两个进程和这两个进程间的管道。
实例二:用于具有亲缘关系的进程间通信
管道的主要局限性正体现在它的特点上:
有名管道的创建
小结:
管道常用于两个方面:(1)在shell中时常会用到管道(作为输入输入的重定向),在这种应用方式下,管道的创建对于用户来说是透明的;(2)用于具有亲缘关系的进程间通信,用户自己创建管道,并完成读写操作。
FIFO可以说是管道的推广,克服了管道无名字的限制,使得无亲缘关系的进程同样可以采用先进先出的通信机制进行通信。
管道和FIFO的数据是字节流,应用程序之间必须事先确定特定的传输"协议",采用传播具有特定意义的消息。
要灵活应用管道及FIFO,理解它们的读写规则是关键。
信号生命周期
信号是进程间通信机制中唯一的异步通信机制,可以看作是异步通知,通知接收信号的进程有哪些事情发生了。信号机制经过POSIX实时扩展后,功能更加强大,除了基本通知功能外,还可以传递附加信息。
可以从两个不同的分类角度对信号进行分类:(1)可靠性方面:可靠信号与不可靠信号;(2)与时间的关系上:实时信号与非实时信号。
(1) 可靠信号与不可靠信号
不可靠信号 :Linux下的不可靠信号问题主要指的是信号可能丢失。
可靠信号 :信号值位于SIGRTMIN和SIGRTMAX之间的信号都是可靠信号,可靠信号克服了信号可能丢失的问题。Linux在支持新版本的信号安装函数sigation()以及信号发送函数sigqueue()的同时,仍然支持早期的signal()信号安装函数,支持信号发送函数kill()。
对于目前linux的两个信号安装函数:signal()及sigaction()来说,它们都不能把SIGRTMIN以前的信号变成可靠信号(都不支持排队,仍有可能丢失,仍然是不可靠信号),而且对SIGRTMIN以后的信号都支持排队。这两个函数的最大区别在于,经过sigaction安装的信号都能传递信息给信号处理函数(对所有信号这一点都成立),而经过signal安装的信号却不能向信号处理函数传递信息。对于信号发送函数来说也是一样的。
(2) 实时信号与非实时信号
前32种信号已经有了预定义值,每个信号有了确定的用途及含义,并且每种信号都有各自的缺省动作。如按键盘的CTRL ^C时,会产生SIGINT信号,对该信号的默认反应就是进程终止。后32个信号表示实时信号,等同于前面阐述的可靠信号。这保证了发送的多个实时信号都被接收。实时信号是POSIX标准的一部分,可用于应用进程。非实时信号都不支持排队,都是不可靠信号;实时信号都支持排队,都是可靠信号。
发送信号的主要函数有:kill()、raise()、 sigqueue()、alarm()、setitimer()以及abort()。
调用成功返回 0;否则,返回 -1。
sigqueue()是比较新的发送信号系统调用,主要是针对实时信号提出的(当然也支持前32种),支持信号带有参数,与函数sigaction()配合使用。
sigqueue的第一个参数是指定接收信号的进程ID,第二个参数确定即将发送的信号,第三个参数是一个联合数据结构union sigval,指定了信号传递的参数,即通常所说的4字节值。
sigqueue()比kill()传递了更多的附加信息,但sigqueue()只能向一个进程发送信号。sigqueue()比kill()传递了更多的附加信息,但sigqueue()只能向一个进程发送信号。
inux主要有两个函数实现信号的安装: signal() 、 sigaction() 。其中signal()在可靠信号系统调用的基础上实现, 是库函数。它只有两个参数,不支持信号传递信息,主要是用于前32种非实时信号的安装;而sigaction()是较新的函数(由两个系统调用实现:sys_signal以及sys_rt_sigaction),有三个参数,支持信号传递信息,主要用来与 sigqueue() 系统调用配合使用,当然,sigaction()同样支持非实时信号的安装。sigaction()优于signal()主要体现在支持信号带有参数。
消息队列就是一个消息的链表。可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息。消息队列是随内核持续的
消息队列的内核持续性要求每个消息队列都在系统范围内对应唯一的键值,所以,要获得一个消息队列的描述字,只需提供该消息队列的键值即可;
消息队列与管道以及有名管道相比,具有更大的灵活性,首先,它提供有格式字节流,有利于减少开发人员的工作量;其次,消息具有类型,在实际应用中,可作为优先级使用。这两点是管道以及有名管道所不能比的。同样,消息队列可以在几个进程间复用,而不管这几个进程是否具有亲缘关系,这一点与有名管道很相似;但消息队列是随内核持续的,与有名管道(随进程持续)相比,生命力更强,应用空间更大。
信号灯与其他进程间通信方式不大相同,它主要提供对进程间共享资源访问控制机制。相当于内存中的标志,进程可以根据它判定是否能够访问某些共享资源,同时,进程也可以修改该标志。除了用于访问控制外,还可用于进程同步。信号灯有以下两种类型:
int semop(int semid, struct sembuf *sops, unsigned nsops); semid是信号灯集ID,sops指向数组的每一个sembuf结构都刻画一个在特定信号灯上的操作。
int semctl(int semid,int semnum,int cmd,union semun arg)
该系统调用实现对信号灯的各种控制操作,参数semid指定信号灯集,参数cmd指定具体的操作类型;参数semnum指定对哪个信号灯操作,只对几个特殊的cmd操作有意义;arg用于设置或返回信号灯信息。
进程间需要共享的数据被放在一个叫做IPC共享内存区域的地方,所有需要访问该共享区域的进程都要把该共享区域映射到本进程的地址空间中去。系统V共享内存通过shmget获得或创建一个IPC共享内存区域,并返回相应的标识符。内核在保证shmget获得或创建一个共享内存区,初始化该共享内存区相应的shmid_kernel结构注同时,还将在特殊文件系统shm中,创建并打开一个同名文件,并在内存中建立起该文件的相应dentry及inode结构,新打开的文件不属于任何一个进程(任何进程都可以访问该共享内存区)。所有这一切都是系统调用shmget完成的。
shmget()用来获得共享内存区域的ID,如果不存在指定的共享区域就创建相应的区域。shmat()把共享内存区域映射到调用进程的地址空间中去,这样,进程就可以方便地对共享区域进行访问操作。shmdt()调用用来解除进程对共享内存区域的映射。shmctl实现对共享内存区域的控制操作。这里我们不对这些系统调用作具体的介绍,读者可参考相应的手册页面,后面的范例中将给出它们的调用方法。
注:shmget的内部实现包含了许多重要的系统V共享内存机制;shmat在把共享内存区域映射到进程空间时,并不真正改变进程的页表。当进程第一次访问内存映射区域访问时,会因为没有物理页表的分配而导致一个缺页异常,然后内核再根据相应的存储管理机制为共享内存映射区域分配相应的页表。
linux中如何装载信号的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于如何发送信号linux、linux中如何装载信号的信息别忘了在本站进行查找喔。