今天给各位分享linux记录锁是什么的知识,其中也会对Linux锁机制进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
1、iuni系统怎么把应用上锁
文件锁
1.fcntl()函数说明
前面讲述的5个基本函数实现了文件的打开、读/写等基本操作,本节将讨论在文件已经共享的情况下如何操作,也就是当多个用户共同使用、操作一个文件的情况。这时,Linux通常采用的方法是给文件上锁,来避免共享的资源产生竞争的状态。
文件锁包括建议性锁和强制性锁。建议性锁要求每个上锁文件的进程都要检查是否有锁存在,并且尊重已有的锁。在一般情况下,内核和系统都不使用建议性锁。强制性锁是由内核执行的锁,当一个文件被上锁进行写入操作时,内核将阻止其他任何文件对其进行读写操作。采用强制性锁对性能的影响很大,每次读写操作都必须检查是否有锁存在。
在Linux中,实现文件上锁的函数有lockf()和fcntl(),其中lockf()用于对文件施加建议性锁,而fcntl()不仅可以施加建议性锁,还可以施加强制性锁。同时,fcntl()还能对文件的某一记录上锁,也就是记录锁。
记录锁又可分为读取锁和写入锁,其中读取锁又称为共享锁,它能够使多个进程都能在文件的同一部分建立读取锁。而写入锁又称为排斥锁,在任何时刻只能有一个进程在文件的某个部分建立写入锁。当然,在文件的同一部分不能同时建立读取锁和写入锁。
fcntl()函数具有很丰富的功能,它可以对已打开的文件描述符进行各种操作,不仅包括管理文件锁,还包括获得设置文件描述符和文件描述符标志、文件描述符的复制等很多功能。本节主要介绍fcntl()函数建立记录锁的方法,关于它的其他操作,感兴趣的读者可以参看fcntl手册。
2.fcntl()函数格式
用于建立记录锁的fcntl()函数语法要点如表2.6所示。
表2.6 fcntl()函数语法要点
所需头文件
#include
sys/types.h
#include unistd.h
#include fcntl.h
函数原型
int fcntl(int fd, int cmd, struct flock
*lock)
函数传入值
fd:文件描述符
cmd
F_DUPFD:复制文件描述符
F_GETFD:获得fd的close-on-exec标志,若标志未设置,则文件经过exec()函数之后仍保持打开状态
F_SETFD:设置close-on-exec标志,该标志由参数arg的FD_CLOEXEC位决定
F_GETFL:得到open设置的标志
F_SETFL:改变open设置的标志
F_GETLK:根据lock描述,决定是否上文件锁
F_SETLK:设置lock描述的文件锁
F_SETLKW:这是F_SETLK的阻塞版本(命令名中的W表示等待(wait))。
在无法获取锁时,会进入睡眠状态;如果可以获取锁或者捕捉到信号则会返回
lock:结构为flock,设置记录锁的具体状态,后面会详细说明
函数返回值
成功:0
1:出错
这里,lock的结构如下所示:
struct flock
{
short
l_type;
off_t l_start;
short l_whence;
off_t
l_len;
pid_t l_pid;
}
lock结构中每个变量的取值含义如表2.7所示。
表2.7 lock结构变量取值
l_type
F_RDLCK:读取锁(共享锁)
F_WRLCK:写入锁(排斥锁)
F_UNLCK:解锁
l_start
加锁区域在文件中的相对位移量(字节),与l_whence值一起决定加锁区域的起始位置
l_whence:
相对位移量的起点(同lseek的whence)
SEEK_SET:当前位置为文件的开头,新位置为偏移量的大小
SEEK_CUR:当前位置为文件指针的位置,新位置为当前位置加上偏移量
SEEK_END:当前位置为文件的结尾,新位置为文件的大小加上偏移量的大小
l_len
加锁区域的长度
为加锁整个文件,通常的方法是将l_start设置为0,l_whence设置为SEEK_SET,l_len设置为0。
3.fcntl()使用实例
下面首先给出了使用fcntl()函数的文件记录锁功能的代码实现。在该代码中,首先给flock结构体的对应位赋予相应的值。
接着调用两次fcntl()函数。用F_GETLK命令判断是否可以进行flock结构所描述的锁操作:若可以进行,则flock结构的l_type会被设置为F_UNLCK,其他域不变;若不可进行,则l_pid被设置为拥有文件锁的进程号,其他域不变。
用F_SETLK和F_SETLKW命令设置flock结构所描述的锁操作,后者是前者的阻塞版。
当第一次调用fcntl()时,使用F_GETLK命令获得当前文件被上锁的情况,由此可以判断能不能进行上锁操作;当第二次调用fcntl()时,使用F_SETLKW命令对指定文件进行上锁/解锁操作。因为F_SETLKW命令是阻塞式操作,所以,当不能把上锁/解锁操作进行下去时,运行会被阻塞,直到能够进行操作为止。
文件记录锁的功能代码具体如下所示:
/* lock_set.c */
int lock_set(int
fd, int type)
{
struct flock old_lock,
lock;
lock.l_whence = SEEK_SET;
lock.l_start =
0;
lock.l_len = 0;
lock.l_type =
type;
lock.l_pid = -1;
/* 判断文件是否可以上锁
*/
fcntl(fd, F_GETLK, lock);
if (lock.l_type !=
F_UNLCK)
{
/* 判断文件不能上锁的原因 */
if
(lock.l_type == F_RDLCK) /* 该文件已有读取锁
*/
{
printf("Read lock already set by %d\n",
lock.l_pid);
}
else if (lock.l_type == F_WRLCK) /*
该文件已有写入锁 */
{
printf("Write lock already set
by %d\n", lock.l_pid);
}
}
/* l_type
可能已被F_GETLK修改过 */
lock.l_type = type;
/*
根据不同的type值进行阻塞式上锁或解锁 */
if ((fcntl(fd, F_SETLKW, lock))
0)
{
printf("Lock failed:type = %d\n",
lock.l_type);
return
1;
}
switch(lock.l_type)
{
case
F_RDLCK:
{
printf("Read lock set by %d\n",
getpid());
}
break;
case
F_WRLCK:
{
printf("Write lock set by %d\n",
getpid());
}
break;
case
F_UNLCK:
{
printf("Release lock by %d\n",
getpid());
return
1;
}
break;
default:
break;
}/*
end of switch */
return 0;
}
下面的实例是文件写入锁的测试用例,这里首先创建了一个hello文件,之后对其上写入锁,最后释放写入锁。代码如下所示:
/* write_lock.c */
#include
unistd.h
#include sys/file.h
#include
sys/types.h
#include sys/stat.h
#include
stdio.h
#include stdlib.h
#include
"lock_set.c"
int main(void)
{
int
fd;
/* 首先打开文件 */
fd = open("hello",O_RDWR | O_CREAT,
0644);
if(fd 0)
{
printf("Open file
error\n");
exit(1);
}
/* 给文件上写入锁
*/
lock_set(fd, F_WRLCK);
getchar();
/* 给文件解锁
*/
lock_set(fd, F_UNLCK);
getchar();
close(fd);
exit(0);
}
为了能够使用多个终端,更好地显示写入锁的作用,本实例主要在PC上测试,读者可将其交叉编译,下载到目标板上运行。下面是在PC上的运行结果。为了使程序有较大的灵活性,笔者采用文件上锁后由用户输入任意键使程序继续运行。建议读者开启两个终端,并且在两个终端上同时运行该程序,以达到多个进程操作一个文件的效果。在这里,笔者首先运行终端一,请读者注意终端二中的第一句。
终端一:
$ ./write_lock
write lock set by
4994
release lock by 4994
终端二:
$ ./write_lock
write lock already
set by 4994
write lock set by 4997
release lock by 4997
由此可见,写入锁为互斥锁,同一时刻只能有一个写入锁存在。
接下来的程序是文件读取锁的测试用例,原理与上面的程序一样。
/* fcntl_read.c */
#include
unistd.h
#include sys/file.h
#include
sys/types.h
#include sys/stat.h
#include
stdio.h
#include stdlib.h
#include
"lock_set.c"
int main(void)
{
int fd;
fd
= open("hello",O_RDWR | O_CREAT, 0644);
if(fd
0)
{
printf("Open file
error\n");
exit(1);
}
/* 给文件上读取锁
*/
lock_set(fd, F_RDLCK);
getchar();
/* 给文件解锁
*/
lock_set(fd, F_UNLCK);
getchar();
close(fd);
exit(0);
}
同样开启两个终端,并首先启动终端一上的程序,其运行结果如下所示。
终端一:
$ ./read_lock
read lock set by
5009
release lock by 5009
终端二:
$ ./read_lock
read lock set by
5010
release lock by 5010
读者可以将此结果与写入锁的运行结果相比较,可以看出,读取锁为共享锁,当进程5009已设置读取锁后,进程5010仍然可以设置读取锁。
2、linux中fcntl()函数的使用
前面的这5个基本函数实现了文件的打开、读写等基本操作,这一节将讨论的是,在文 件已经共享的情况下如何操作,也就是当多个用户共同使用、操作一个文件的情况,这时,Linux 通常采用的方法是给文件上锁,来避免共享的资源产生竞争的状态。
文件锁包括建议性锁和强制性锁。
建议性锁要求每个上锁文件的进程都要检查是否有锁存,并且尊重已有的锁。在一般情况下,内核和系统都不使用建议性锁。强制性锁是由内 核执行的锁,当一个文件被上锁进行写入操作的时候,内核将阻止其他任何文件对其进行读写操作。采用强制性锁对性能的影响很大,每次读写操作都必须检查是否有锁存在。
在 Linux 中,实现文件上锁的函数有lock和fcntl,其中flock用于对文件施加建议性锁,而fcntl不仅可以施加建议性锁,还可以施加强制锁。同时,fcntl还能对文件的某一记录进行上锁,也就是记录锁。
记录锁又可分为读取锁和写入锁,其中读取锁又称为共享锁,它能够使多个进程都能在文件的同一部分建立读取锁。而写入锁又称为排斥锁,在任何时刻只能有一个进程在文件的某个部分上建立写入锁。当然,在文件的同一部分不能同时建立读取锁和写入锁。
3、Linux进程间通信(互斥锁、条件变量、读写锁、文件锁、信号灯)
为了能够有效的控制多个进程之间的沟通过程,保证沟通过程的有序和和谐,OS必须提供一定的同步机制保证进程之间不会自说自话而是有效的协同工作。比如在 共享内存的通信方式中,两个或者多个进程都要对共享的内存进行数据写入,那么怎么才能保证一个进程在写入的过程中不被其它的进程打断,保证数据的完整性 呢?又怎么保证读取进程在读取数据的过程中数据不会变动,保证读取出的数据是完整有效的呢?
常用的同步方式有: 互斥锁、条件变量、读写锁、记录锁(文件锁)和信号灯.
互斥锁:
顾名思义,锁是用来锁住某种东西的,锁住之后只有有钥匙的人才能对锁住的东西拥有控制权(把锁砸了,把东西偷走的小偷不在我们的讨论范围了)。所谓互斥, 从字面上理解就是互相排斥。因此互斥锁从字面上理解就是一点进程拥有了这个锁,它将排斥其它所有的进程访问被锁住的东西,其它的进程如果需要锁就只能等待,等待拥有锁的进程把锁打开后才能继续运行。 在实现中,锁并不是与某个具体的变量进行关联,它本身是一个独立的对象。进(线)程在有需要的时候获得此对象,用完不需要时就释放掉。
互斥锁的主要特点是互斥锁的释放必须由上锁的进(线)程释放,如果拥有锁的进(线)程不释放,那么其它的进(线)程永远也没有机会获得所需要的互斥锁。
互斥锁主要用于线程之间的同步。
条件变量:
上文中提到,对于互斥锁而言,如果拥有锁的进(线)程不释放锁,其它进(线)程永远没机会获得锁,也就永远没有机会继续执行后续的逻辑。在实际环境下,一 个线程A需要改变一个共享变量X的值,为了保证在修改的过程中X不会被其它的线程修改,线程A必须首先获得对X的锁。现在假如A已经获得锁了,由于业务逻 辑的需要,只有当X的值小于0时,线程A才能执行后续的逻辑,于是线程A必须把互斥锁释放掉,然后继续“忙等”。如下面的伪代码所示:
1.// get x lock
2.while(x
linux记录锁是什么的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于Linux锁机制、linux记录锁是什么的信息别忘了在本站进行查找喔。